Data & Digital for Climate Action

Thursday Oct 19th (9:30 – 10:30 am)
Data and Digital for Climate Action

Zaki B. Khoury
Senior Digital Development Specialist
Lead, Korea Digital Development Program (KoDi)
Agenda

Data and Digital for Climate Action

1. The Big Picture
2. World Bank Green-Digital Investments
3. Shared Data Platform for Early Warning: The case of the Maldives
4. A Way Forward
Data and Digital for Climate Action

1 The Big Picture
Green Digital Development

A World Bank Commitment
1.5 - 4% of global GHG emissions is estimated for the digital sector (and growing)

64% of NDCs mention using technology for adaptation and/or mitigation*

~3 billion people remain offline and the vast majority are concentrated in developing countries

Countries are lagging behind on climate commitments

How do we bridge the digital divide in a sustainable way and leverage digital technologies effectively for climate action?

*an NDC, or Nationally Determined Contribution, is a climate action plan to cut emissions and adapt to climate impacts
Digital contributes to 1.5-4% of global GHG emissions

Digital Sector Carbon Footprint Breakdown

<table>
<thead>
<tr>
<th>Consumer devices: 24-40%</th>
<th>Connectivity networks: 16-40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smartphones</td>
<td>Mobile network operation</td>
</tr>
<tr>
<td>Computers</td>
<td>Fixed network operation</td>
</tr>
<tr>
<td>Others</td>
<td>Depl/Dec (*)</td>
</tr>
</tbody>
</table>

Data centers: 20-48%
ICT sector’s contribution to the global GHG emissions

- ICT sector is estimated to emit 740 Mt-CO$_2$ eq annually and responsible for 1.4-3.6% of the global GHG emissions in 2020.
- By 2040, the ICT carbon footprint could account for as much as 14% of the total worldwide carbon footprint (Belkhir and Elmegri (2018)).
- ITU stresses that in order to follow the 1.5°C trajectory, GHG emission from the ICT sector should be halved and limited to less than 400 Mt-CO2 equivalent in 2030.

Source: Belkhir and Elmegri (2018)
Source: ITU (2020)
The Green Digital Nexus

Greening Digital

<table>
<thead>
<tr>
<th>Climate Action</th>
<th>Greening the Digital Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation</td>
<td>Greening the digital sector by climate proofing digital infrastructure and services</td>
</tr>
<tr>
<td>Mitigation</td>
<td>Greening the digital sector through energy efficiency measures and use of renewable energy</td>
</tr>
</tbody>
</table>

Greening with Digital

<table>
<thead>
<tr>
<th>Greening with Digital Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveraging digital technologies to enhance resilience of economies, populations, and sectors</td>
</tr>
<tr>
<td>Leveraging digital technologies to decarbonize other sectors such as energy, transport, and cities</td>
</tr>
</tbody>
</table>
So ... Why is Now the Time to Act?

Data and Digital for Climate Action

2 World Bank Green-Digital Investments
Exponential Growth in World Bank Digital Investments

Digital investments are expected to grow dramatically over the next 3 years.
Mainstreaming Green in World Bank Digital Investments

Examples of recent digital investments with green digital components (funding size is for the full project, incl. the green digital components)

CARIBBEAN (4 COUNTRIES): $94mn
Greening Digital & Greening with Digital:
climate resilient digital infrastructure and digital delivery of services to ensure continuity, and growing the digital economy

SIERRA LEONE: $50mn
Greening Digital:
data-driven early warning systems & *Greening Digital:*
e-waste management policy

CAMEROON: $100MN
Greening Digital:
e-waste recycling strategy, solar power promotion and compliance with Green ICT standards for digital networks

MONGOLIA: $41mn (WB, GoM)
Greening with Digital:
Disaster recovery data centers, e-Mongolia portal

MARSHALL ISLANDS: $37.5mn
Greening Digital:
energy efficient digital infrastructure

MOZAMBIQUE: $200mn
Greening Digital:
renewable energy powered digital infrastructure & mobile payments for home solar systems

ARGENTINA: $200mn
Greening Digital & Greening with Digital:
climatic resilient telecom/data infrastructure, energy efficient data infrastructure

MALDIVES: $10mn
Greening with Digital:
shared data platform and innovative data collection, including climate relevant data, to monitor/manage marine ecosystems
Digital Investments in other Key Sectors too

<table>
<thead>
<tr>
<th>Sector</th>
<th>Challenge</th>
<th>Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Agriculture, forestry, and land use change produce almost 25% of global GHG emissions.</td>
<td>Digital technologies can potentially reduce GHG emissions by 1-4% from agriculture sector by 2030.</td>
</tr>
<tr>
<td>Transport</td>
<td>Transport accounts for 20% of the world’s greenhouse gas emissions.</td>
<td>Optimizing traffic flow; contributing to the establishment of digitally-enabled modern logistic systems that improve freight management; and transitioning to electric vehicles.</td>
</tr>
<tr>
<td>Energy</td>
<td>It is estimated that energy accounts for more than two-thirds of total GHG emissions globally.</td>
<td>Enhancing energy efficiency, and by enabling demand-side flexibility and mobile money enables new business models for delivering affordable home solar systems.</td>
</tr>
<tr>
<td>Urban</td>
<td>Cities consume 2/3 of the energy used worldwide and account for about 70% of carbon emissions.</td>
<td>Digital technologies can help reduce total energy demand in the building sector by about 10% through operational efficiency compared to IEA’s reference scenario, from 2017-2040.</td>
</tr>
</tbody>
</table>
Climate Change Amplifies the Risks

The impacts of climate change, causing floods; droughts; frosts; and heatwaves, affect the world's population.

Data and Digital transformation will help in implementing urgent action to combat climate change.

<table>
<thead>
<tr>
<th>FLOODING</th>
<th>SEA LEVEL RISE</th>
<th>WIND, STORM</th>
<th>TSUNAMI</th>
<th>WATER SCARCITY & HIGH TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICT equipment at risk of outage due to flooding of premises</td>
<td>Poses long-term risk to submarine cable landing stations, and terrestrial networks accessing them.</td>
<td>High wind with debris damages wireless communication antennas and related passive infrastructure (poles, towers, building fixtures)</td>
<td>Severely damages submarine cable landing stations</td>
<td>Impacts operation of data centers (cooling systems)</td>
</tr>
<tr>
<td>Flooding–caused power outages</td>
<td>Flooding risk for data centers and ICT equipment in coastal areas.</td>
<td>Top-soil erosion damages underground infrastructure</td>
<td>Damages and puts high risks for terrestrial infrastructure of all kinds</td>
<td>Medium level impact on the operation of servers and network equipment that requires cooling.</td>
</tr>
<tr>
<td>Water with debris, causing surface damage, risking cabling and ground level backup power</td>
<td></td>
<td>Risk for data centers in coastal areas.</td>
<td>Risk for data centers in coastal areas.</td>
<td>Shorter lifecycle of devices</td>
</tr>
</tbody>
</table>
Hazards Impacting Digital Connectivity Infrastructure

<table>
<thead>
<tr>
<th>Infrastructure/Climate event</th>
<th>Inland/Coastal Floods</th>
<th>Earthquake</th>
<th>Tsunami</th>
<th>Sea level rise</th>
<th>High Temp</th>
<th>Water Scarcity</th>
<th>High Winds/Storm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submarine Cable (undersea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submarine Cable (near shore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submarine Cable Landing Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Cables (underground)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Cables (overland/aerial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Nodes (switches, cabinets, points of presence etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antennas/ mobile BTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from GSA (2014), UK DRO (2018), Fu et al. (2016), and Dept. of Homeland Security (2017)
3

Shared Data Platform for Early Warning:
The case of the Maldives
About the Maldives

• About 550,000 people live across 185 islands
• The country covers approx. 90,000 square kilometers, but only 298 square kilometers is dry land
• Of which, more than 80% lies less than one meter above sea level
Why are coral reefs important?

Among the most biologically diverse and valuable ecosystems on Earth

Approx. 25% of all marine life, including over 4,000 species of fish, are dependent on them

An estimated 1 billion people worldwide benefit from their ecosystems

Source: https://www.epa.gov/coral-reefs/basic-information-about-coral-reefs
Coral Reefs are critical to The Maldives

Tourism Fisheries Sustainability
Digital Maldives Project

Three components:

1. Improved digital connectivity & competitiveness
2. Digital identification for improved in-person & online service delivery
3. Digital technologies & data platform for climate resilience

- 3a. Climate data platform: To provide a means for government entities, people, and businesses to find and engage with climate-relevant data
- 3b. Pilot featuring state-of-the-art digital technologies and tools to collect and analyze data related to climate-critical ecosystems
How can a Shared Data Platform Help?

- **Complex & Fragile**
 - Water temps, salinity, acidity, runoff, physical damage, etc.

- **Hidden**
 - Not visible

It is difficult to protect Coral Reefs

Data
- Collection
- Processing
- Visualization

Inform Decision Making
- National
- Local

Global Engagement
- Crowdsourcing
- AI/ML
Foundations for development of
Shared Data Platform for Climate Action

• Data
 • Collection / Continuous
 • Aggregation
 • Processing
 • Visualization
• Decision making
 • Relevant and easy to use
• Global engagement
 • Crowdsourc / Build for many
Data and Digital for Climate Action

4 In Conclusion ... A Way Forward
More needs to be done...

Compared to other sectors, the relationship between digital and climate change is less clearly understood and further work is needed – research, policy and regulation good practices and investments.
The Way Forward

- Digital is part of the climate change solution – and the challenge
 - Climate change and digital are global policy priorities but often addressed in silos. Bridging the twin transition of green and digital is necessary
 - Reducing emissions from the digital sector requires national action. Digital sector is the largest renewable energy consumer

- Digital technologies can help countries adapt to climate change but require investments in Connectivity, Data, and digital skills for developing the appropriate solutions
 - Digital infrastructure needs to be treated as critical infrastructure with the necessary climate proofing
 - Leveraging data for climate reporting, decision making, citizen engagement is critical for climate action and requires investments in digital public goods, interoperability and safeguards
 - Climate financing largely ignores the digital sector, which needs to change if digital is to be a catalyst for climate action
Priority Actions

▪ Continue upstream support while growing our downstream work
 o Upstream
 o Project design, diagnostics, Analysis and Assessment, etc.
 o Downstream
 o Technical design

▪ Mainstream “greening digital” while expanding “greening with digital”
 o Greening digital
 o Resilience and GHG emission; green data centers; etc.
 o Greening with digital
 • Shared data platform; digital technologies for climate use cases; etc.

▪ Increase awareness for the nexus of digital and climate change
 o Promote knowledge sharing and raise awareness both externally and internally
THANK YOU

Contact
E-mail: zkhoury@worldbank.org