

Methodologies and Technologies to Improve Soil Carbon Sequestration and Biodiversity Management

Jooyeon Moon
Researcher
National Institute of Green Technology (NIGT)

Contents

- 1. Overview of Soil Carbon Sequestration
- 2. Payment Model for Carbon Benefits
- 3. Carbon Finance Mechanism
- 4. Certification Standards for Soil Organic Carbon (SOC)
- 5. Case Studies
- 6. Implication for future application

National Institute of Green Technology: Missions and Key Roles

Mission and Legal Foundation Support for green technology R&D policy development and international collaboration

Article 32-2 of the Charter of the Korea Institute of Science and Technology(Affiliated Institutes)

Key Functions and Roles

Policy Data Production

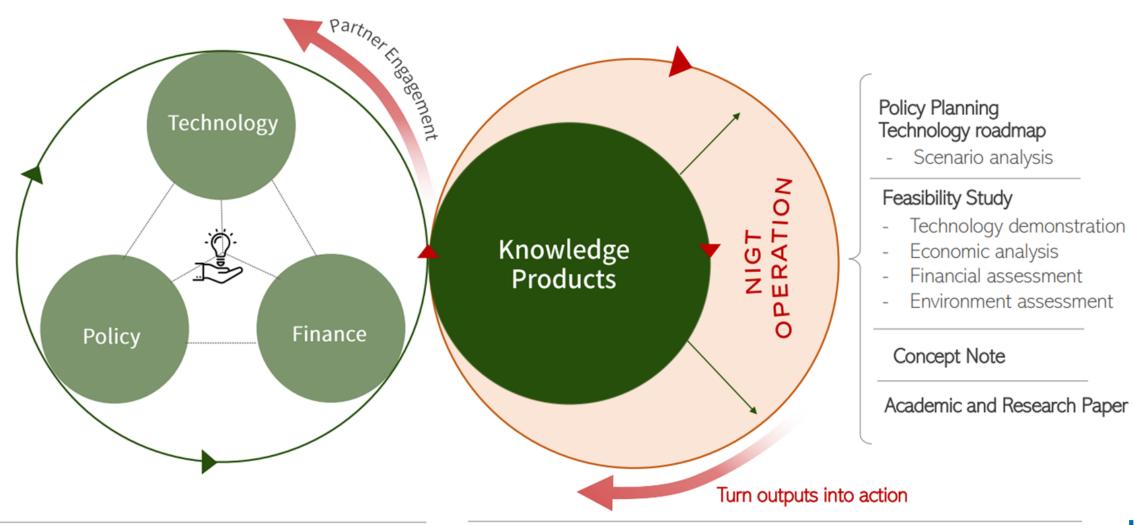
- Analyze and produce the data and statistics of technologies
- Establish and operate integrated data platforms

National R&D Policy Planning

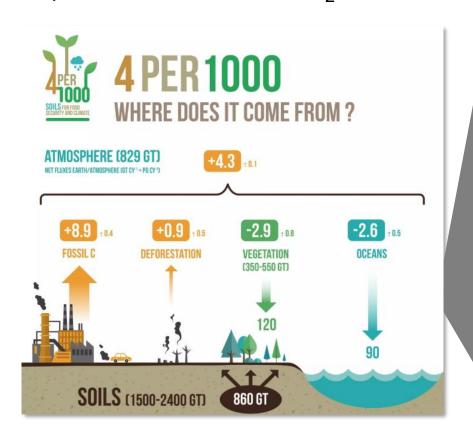
- Develop national R&D strategies and project planning
- Propose legislative and institutional improvement plans

Global Cooperation Strategies

- Establish full-cycle collaboration & tech support systems
- Develop model for overseas dissemination of domestic tech


HRD Policy Management

- Develop national policies for climate tech HR development
- Plan & implement workforce programs for universities, SMEs, and stakeholders

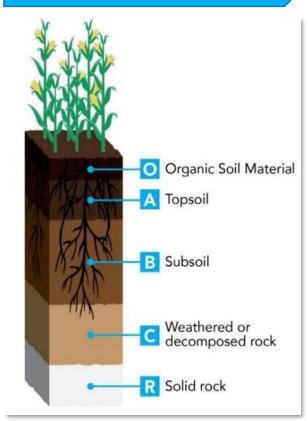

Knowledge Products are key source of Partnership

J D S S S Nly

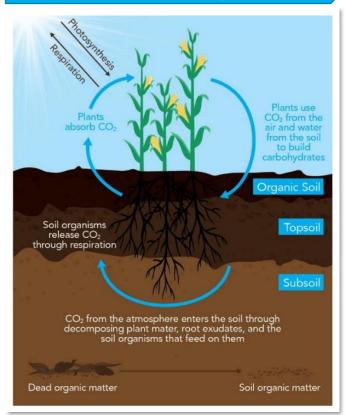
The importance of soil carbon as a key strategy for mitigation global CO₂ emissions

- 4 Per 100 Initiative: highlights the land sector's role in carbon storage and its potential to combat climate change
- An annual increase of 4% of the world soil surface C stocks (860*0.004) would nearly compensate the annual CO₂ increase of the atmosphere.

The 4 per 100 Initiatives


- > CO₂ emissions from fossil fuel use: 8.9 Gt / yr
- ➤ Compared to the 2,400 Gt of carbon stored in the world's soil, it accounts for only 0.004% of the total (8.9 / 2,400= 0.004)

A modest 0.4% annual increase in soil carbon stocks could offset fossil fuel emission, leading to carbon neutrality


Processes of Soil Carbon Storage

 The soil can act as a carbon sink or source, depending on the balance between soil carbon accumulation and soil carbon losses. → Management directly affects the carbon cycle and sequestration within soils.

Soil Structure

Soil Carbon Cycle

Soil Carbon Stock

(+) SOC Inputs

- Organic Inputs(i.e. AGB, BGB, manure, compost etc)
- Soil Deposition

(-) SOC Losses

- Decomposition
- Organic removals (i.e. crop residues, roots)
- Erosion
- Leaching

Soil Carbon Pool

(Net Ecosystem Carbon Storage = Plant Carbon Storage – Ecosystem Carbon Respiration – Harvest Carbon Removal)

Key Common Management Practices that Impact Soil Carbon

- There are several proven pathways to enhance soil carbon sequestration (SCS), each offering different benefits, costs, and implementation challenges.
- Among the most prominent approaches include reduced or no- tillage practices, the application of organic amendments such as biochar and compost, and the restoration of grassland.

Nutrient Management

- Compost/manure
- Crop residues/mulch
- Biochar
- Chemical fertilizers

- Promote plant growth
- Increased biomass inputs to soil
- · Increased soil moisture
- If applied in excess, increase soil respiration and N₂O emission

Vegetation Cover management

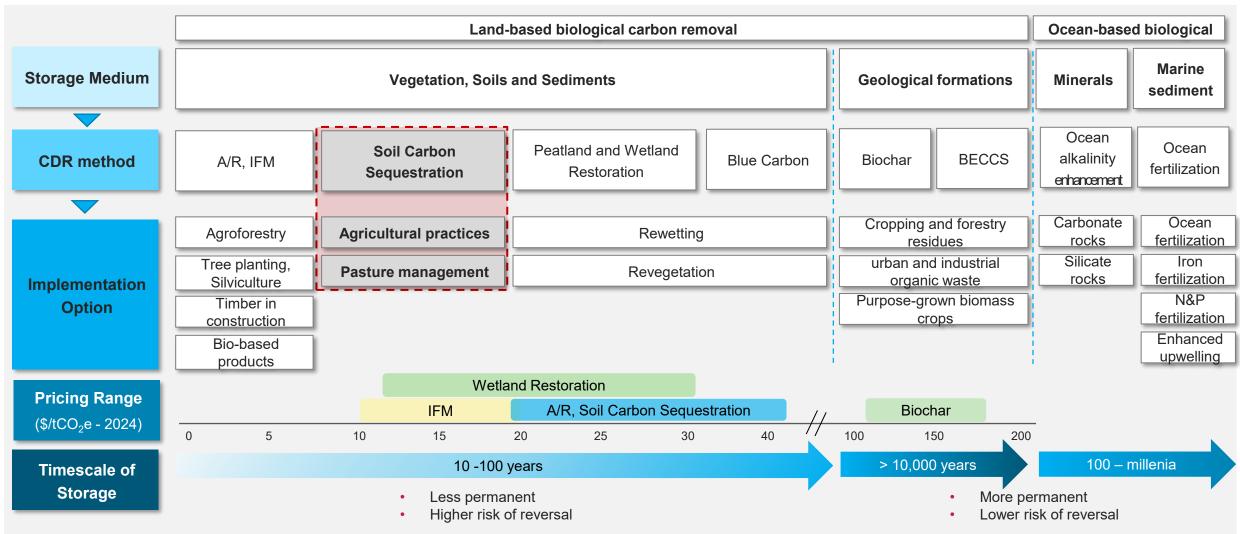
- Crop rotation
- Cover crops
- Intercropping
- Mixed cultivation
- Managed fire

- Increase plant and microbial diversity
- Increased biomass inputs to soil
- Reduced erosion
- Increased soil moisture

Vegetation Cover management

- Reducing evaporation
- Reducing surface runoff
- Improved irrigation techniques

- Increased plant productivity
- Decreased decomposition
- Reduced erosion
- Increased soil moisture


Tillage and Grazing management

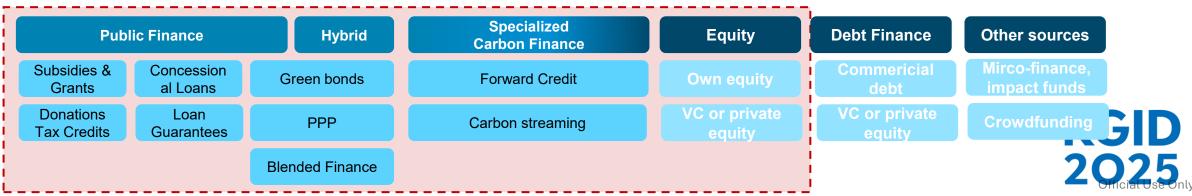
- No-till
- Reduced-till
- Rotational grazing
- Regenerative grazing
- Reduction of livestock hours
- Protection of vulnerable areas

- Reduced erosion
- Increased soil moisture
- Increased plant microbial diversity
- Increased biomass inputs to soil
- Reduced erosion
- Increased soil m

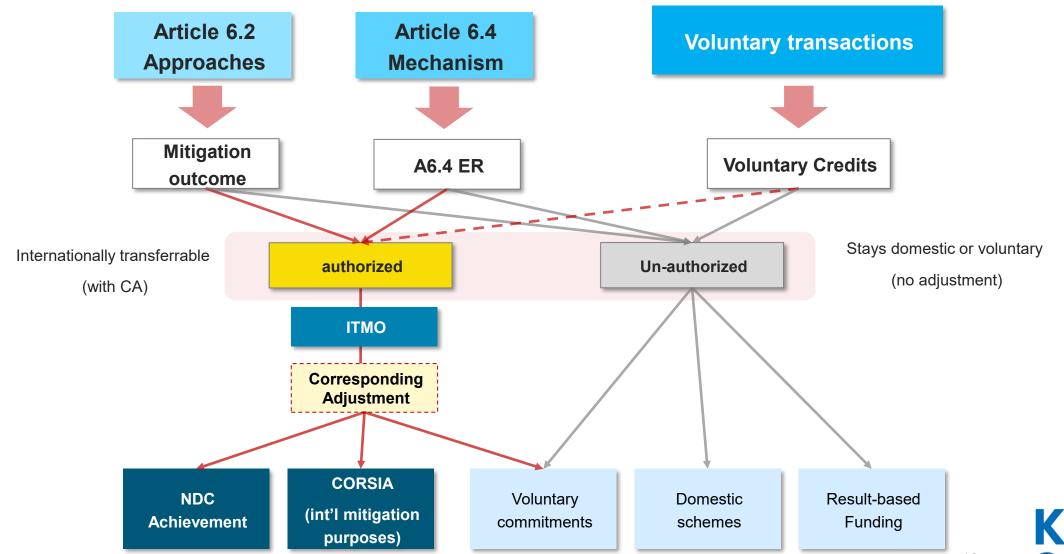
Translating Management Practices into Nbs Frameworks

Payment Model for Carbon Benefits

Action-based

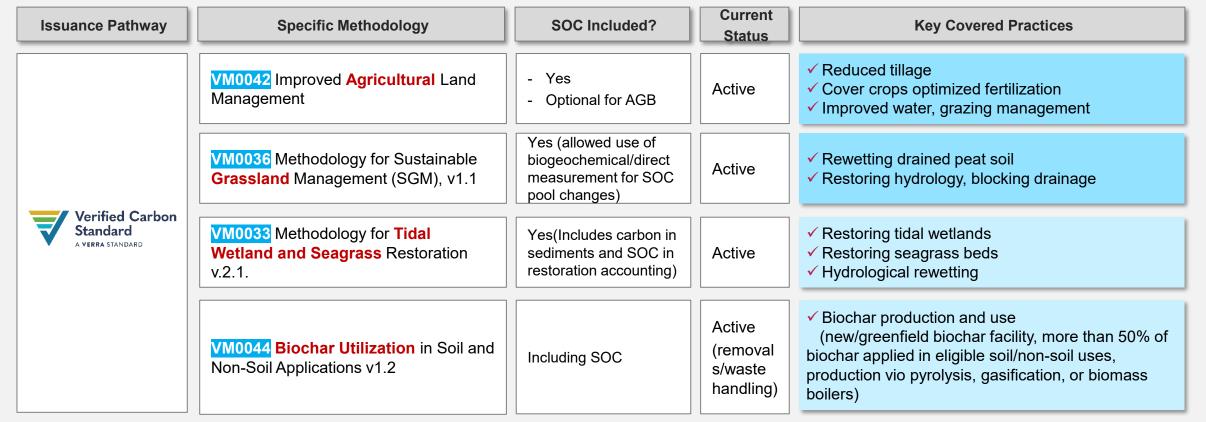

- Payment for Practice
- Fixed payments per hectare or per activity implemented.
- Focuses on what farmers do, not on measured carbon outcomes.
- Example: Conservation agriculture project paid per hectare implemented.
- Payment for Practice: with Performance dividend
- Hybrid between input- and output-based systems.
- Farmers are paid for implementing practices; additional bonuses if the program as a whole achieves carbon results.
- Example: Low-tillage program pays farmers upfront + community-level bonus when carbon gains are verified.

Result-based


- Payment for performance or results-based climate finance (RBCF)
 - Payments tied to measured carbon outcomes (tons CO₂ reduced or sequestered) relative to baseline.
 - Doesn't require carbon market verification; used often in corporate "insetting" projects.
 - Example: Company pays farmers per ton of carbon sequestered within its supply chain.

Carbon market, voluntary or compliance

- Payments linked to verified carbon credits under approved methodologies
- Requires strict monitoring and verification; credits can be sold on the carbon market.
- Example: Agroforestry project sells verified credits to buyers for market-based payments.



Interaction Between Article 6 Mechanisms and the Voluntary Carbon Market

Certification Standards for Soil Organic Carbon (1)

- Parallel to this policy evolution, the voluntary carbon market (VCM) began growing in response to the limitations of regulated frameworks.
- VCMs offered a platform for land-use and soil carbon projects that were previously excluded from compliance markets like the CDM.

Certification Standards for Soil Organic Carbon (2)

Issuance Pathway	Specific Methodology	SOC Included?	Current Status	Key Covered Practices
Gold Standard° Climate Security & Sustainable Development	Soil Organic Carbon Framework Methodology	- Yes (Including SOC)	Active (module status varies)	 ✓ Improved tillage practices ✓ Improved cropland management ✓ Improved grassland management ✓ Organic amendments, nutrient management
PLAN VIVO For nature, climate and communities	Smallholder Agriculture Monitoring and Baseline Assessment	- Yes (Including SOC)	On hold	 ✓ Manure application ✓ External organic inputs such as mulch ✓ Tillage, leaching or erosion of soil
American Carbon Registry	Avoided Conversion of Grasslands and Shrublands to Crop Production	- Including SOC	Inactive as of 12/31/24	 ✓ Maintain perennial grass/shrub cover to avoid cultivation, tillage ✓ Avoid soil disturbance that would oxidize SOC
	Compost Additions to Grazed Grassland	- Including SOC	Inactive as of 3/29/23	 ✓ Maintain perennial grass/shrub cover to avoid cultivation, tillage ✓ Avoid soil disturbance that would oxidize SOC
CLIMATE ACTION RESERVE	U.S. Soil Enrichment Protocol	- Yes (Including SOC)	Active	 ✓ Fertilizer (organic or inorganic) application ✓ The application of soil amendments ✓ Tillage and/or residue management ✓ Crop planting and harvesting, grazing practices
	U.S. and Canada Biochar Protocol	- Quantity of Biochar produced	Active	✓ Biomass acquisition, production, application

Certification Standards for Soil Organic Carbon (3)

Issuance Pathway	Specific Methodology	SOC Included?	Current Status	Key Covered Practices
Australia ACCU Scheme	The 2021 Soil Method	- Yes (Including SOC)	Active	 ✓ Applying nutrients through fertilizer ✓ Applying lime to remediate acid soils ✓ Undertaking new irrigation ✓ Converting from intensive tillage to reduced/notillage
Japan J-Credit Scheme	AG-004 Biochar addition to mineral soil in cropland/grassland	- Quantify increased carbon stored in mineral soil from biochar application	Active	✓ Biochar application in cropland/grassland
Paris Agreement Article 6.4 (PACM)	Overarching guidance/standards for LULUCF and removal activities	- SOC enhancement	Underdev elopment	✓ Land use, land-use change, and forestry broadly

Recent Development (as of early 2025)

- PACM is Supervised by the *Article 6.4 Supervisory Body (SBM)* and *Methodologies Expert Panel (MEP)*
- SBM approved its 2025 work plan and updated procedures/standards, including a new additionality standard.

 CMA6 emphasized standards for removal activities and methodological applications.
- MEP's 2025 agenda focuses on land-based removals: non-permanence, reversal risk, and a new reversal risk assessment tool.

Soil organic carbon and agricultural land management are not yet formally included under Articl

3

Technical insights from Global Soil Carbon Methodologies

- **Technical Landscape Heterogeneous** but converging
- ✓ Different registry systems (voluntary & compliance) are aligning toward a unified Article 6.4 framework.
- ✓ Methodological convergence is emerging, but MRV depth, baseline consistency, and reversal risk management still require harmonization for credit fungibility.

- **Measurement & Quantification Approaches**
- ✓ UNFCCC MEP likely to prioritize hybrid MRV systems that ensure environmental integrity while maintaining accessibility for smallholder and national-scale programs.

Examples

Rea	istrv	Type
	,	. , , , ,

Voluntary

Systems

Examples

Technical characteristics

Activity-specific,

Approach

Direct Soil

Australia ACCU

High accuracy but costly; limited scalability. Essential

Technical Implication

- modular, conservative baselines
- Sampling
- Japan J-Credit Scheme

- U.S. and Canada Biochar

for model calibration.

National **Systems**

Australia ACCU

VM0032 etc)

- U.S. Soil Enrichment Protocol
- U.S. and Canada Biochar Protocol

- Verra VM-series (VM0042,

Japan J-Credit Scheme

Aiming for Article 6.4 alignment; developing standardized MRV and reversal risk tools

Model-Based **Estimation** (IPCC Tier 2-3)

Verra VM-Series

Protocols

US Soil Enrichment Protocol

Scalable and costeffective: requires robust calibration and uncertainty management.

Emerging Framework

- GS' Soil Organic Carbon Framework
- AG-004 Biochar addition to mineral soil in cropland/grassland (Japan)

Aiming for Article 6.4 alignment; developing standardized MRV and reversal risk tools

Hybrid/ Article 6.4 Oriented

- **Gold Standard Soil Organic Carbon Framework**
- Japans' Green Carbon's Carbon Farming (in development)

Balances accuracy and cost; favored under Article 6.4 for landscape and smallholder projects.

Case Studies: Grassland Stewardship in South Africa (GRASS)

Project Overview

Project Type	AFOLU, Agricultural Land Management (ALM) focusing on improved grazing and rangeland restoration		
Location	Eastern Cape and KwaZulu-Natal provinces, South Africa		
Proponent	Conservation South Africa		
Investor	TASC SA (Pty) Ltd., Meat Naturally (Pty) Ltd.		
Duration	30 years (renewable up to 100 years)		
Description	The GRASS Project promotes rotational grazing, grassland rehabilitation, and improved livestock management through community-led stewardship agreements, enhancing soil carbon sequestration and ecosystem resilience		
Methodology	Verified Carbon Standard (VCS) Version 4.1 using VM0042 – Methodology for Improved Agricultural Land Management (IALM)		
Credits Expected	221,482 tCO2e (Annual Projected Emissions Reductions)		
Credits Issued	431,994 VCUs for MRV2 period (2023–2024)		

Development

The initiative is implemented through the Herding for Health (H4H) model, a community-driven framework developed by Peace Parks Foundation, Conservation International, and Meat Naturally Africa. This model integrates farmer training, professional Ecoranger employment, and rangeland restoration to improve soil carbon, biodiversity, and climate resilience. Activities include rotational grazing, land restoration, erosion control, and herd health management.

Price per Credit

Voluntary market estimate: USD 5–8 per tCO₂e

Benefit-Sharing

The project uses a community benefit and ownership model through the Meat Naturally Shareholders Trust, where participating farmers are majority shareholders. Profits generated by the implementing social enterprise, Meat Naturally Africa, are distributed back to the farmers annually, supporting both livelihoods and continued landscape restoration.

Project Overview

Project Proponent

- Meat Naturally Africa
- Leads overall coordination of the project, facilitate community arrangement

Community Institution

- Local Grazing and Farmer Associations
- Represent participating farmers, enforce grazing plans etc

Technical Partner

- TASC South Africa
- Provides scientific oversight and monitoring, supports MRV

Local Governance Authorities

- Traditional Councils and Leaders
- Provide custodial guidance over communal lands, conflict resolution etc

Community Implementation Agents

- Ecorangers
- Locally trained herders responsible for daily monitoring, livestock management, communication between farmers and project partners

Government and Regulatory Body

- Department of Agriculture, Land Reform and Rural Development (DALRRD)
- Supports alignment with natural agricultural policies, oversees land tenure governance under customary law

Primary Beneficiaries

Farmer communities and livestock owners

Case Studies: Grassland Stewardship in South Africa (GRASS)

Project Activities

Activity Type	Carbon Sequestration	Soil/Environmental Benefits	Livelihood & Climate Benefits	
AMP Grazing	↑ SOC via deeper roots & grass regrowth	↓ erosion ↑ vegetation & infiltration	↑ forage stability, drought resilience	
Rangeland Restoration	↑ long-term SOC through biomass recovery	↓ runoff ↑ soil structure	↑ grazing capacity ↓ land degradation	
Fire & Invasive Control Protects existing SOC stocks		↑ biodiversity, nutrient cycling	↓ wildfire risk ↑ forage quality	
Herd Health & Improvement	↓ CH₄ intensity per animal	↓ disease, ↑ efficiency	↑ productivity, income & market access	
Community Stewardship	Sustains SOC through joint management	↑ sustainable land use & equity	↑ governance, social cohesion	
Water & Soil Conservation	↑ soil moisture & biomass	↓ sedimentation, ↑ hydrological balance	↑ drought resilience, stable livelihoods	

Challenges & Opportunities

■ Legal ■

Complex land tenure and traditional governance systems create uncertainty in rights and stewardship compliance.

Outreach

Community adoption may vary due to socioeconomic diversity and local norms. Variable farmer participation and limited capacity for rotational grazing in remote communities.

■ Technical ■

Droughts, erratic rainfall, and wildfire risk reduce grass recovery and carbon permanence; field data collection is logistically difficult.

■ Scale-up Options

Carbon credit issuance delays and price volatility impact community reinvestment cycles and expansion potential.

Key Takeaways from GRASS Project

- Enhances soil carbon & methane mitigation
- restores ecosystems
- strengthens rural resilience

Science-based & credible

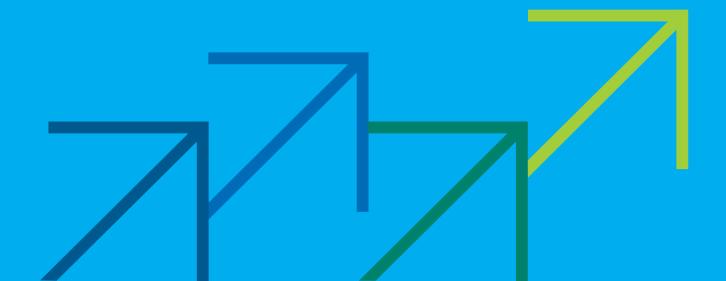
Uses VCS + CCB **frameworks** for measurable, highintegrity climate outcomes

Replicable Model

 Demonstrates how regenerative agriculture+community governance can scale as nature-based climate solutions in Africa and beyond.

Summary and Implications of Case Studies

Appropriate Context	Ecosystem / Land Type	Methodology	Representative Projects	Suitable Financing Mechanisms	Appropriate Context
Large communal rangelands requiring improved grazing and land stewardship	Semi-arid and sub- humid grasslands (communal and private)	VM0042 – Improved Agricultural Land Management (IALM)	Grassland Restoration and Stewardship in South Africa (GRASS)	Verified Carbon Standard (VCS) revenues, community equity models, and donor co-financing for initial training and governance	Large communal rangelands requiring improved grazing and land stewardship
Vast pastoral landscapes managed through conservancy networks	Dryland savannas and rangelands with high community dependence	VM0032 – Sustainable Grassland Management (SGM)	Northern Kenya Grassland Carbon Project (NKCP)	Blended finance: donor grants + carbon revenues via Verified Carbon Units (VCUs); revolving trust funds	Vast pastoral landscapes managed through conservancy networks
Smallholder mixed farming systems focused on soil health and productivity	Croplands and agroforestry mosaics (<2 ha holdings)	VM0017 – Sustainable Agricultural Land Management (SALM)	Kenya Agricultural Carbon Project (KACP)	BioCarbon Fund ERPA off-take, development agency grants, and farmer group payments	Smallholder mixed farming systems focused on soil health and productivity



KGID Green Growth:
The Path to
Sustainable Jobs

THANK YOU

Jooyn.moon@nigt.re.kr

