

K-water Al·DT Water Treatment Plant

October 21, 2025 (Tuesday)

Presenter: Dong gi, Shin

E-mail: tonyshin93@kwater.or.kr

(tonyshin93@gmail.com)

Contents

1. Background and Necessity

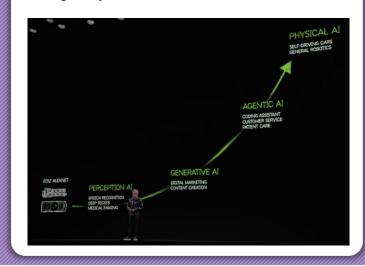
2. Progress of Al & DT in WTPs

3. Key Achievements

Chapter 1

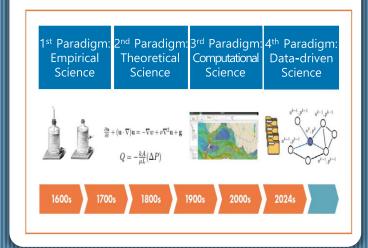
A New Era of Water, A Paradigm Shift in Water Management

Background and Necessity


Al now transcends operation tech, driving the water management paradigm shift

Rapid Advancements of AI Technology

Water Management Paradigm Evolution


Collaboration between Global Companies

- Rapid emergence & active convergence of tech
- Generative AI fuels faster innovation
- * Singularity arrival forecast: 2045 → 2029

Source: Jensen Huang (CES 2025 Keynote Speech)

- Transition to Data-driven Science Paradigm
- Securing applicability of AI tech to water sector
- Expecting increased efficiency & productivity in solving issues

Source: Applications of AI for Water Management, UNESCO (2025)

Source: GWI Technology (2025)

AI WTP is a key solution to address policy, climate and demographic shifts. 77

Addressing Operational Challenges

Flood

Drought

Regional Depopulation

Turbid water inflow

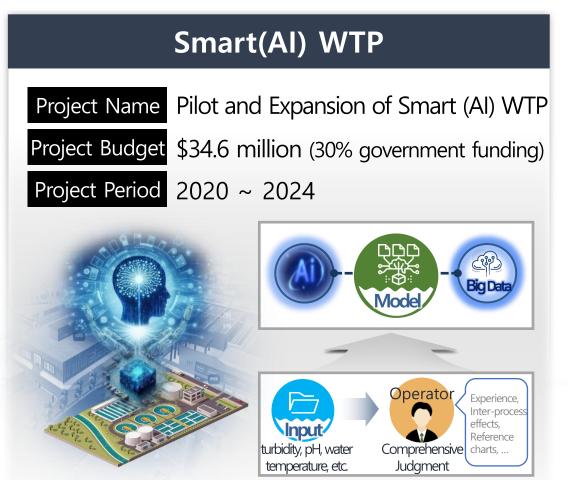
Inflow of pollutants "Population & social" structural changes

Necessity of a reliable water supply in emergencies

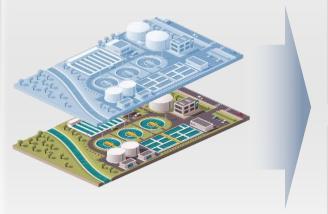
Chapter 2

K-water's Efforts to Transition to Future-oriented Digital Water Management

Progress of Al & DT in WTPs



Under the Ministry of Environment's 「Metropolitan SWM project」,


A next-gen WTP, built on a Foundation of big data·Al·3D·GIS, enable optimal operation and predictive simulation, leading the digital transformation of the domestic water supply

Digital Twin for WTP Facilities (DT) Project Name Pilot of the Hwaseong WTP DT

Project Budget \$2.16 million (30% government funding)

Project Period 2021 ~ 2024

* 1 USD = 1,390 KRW (As of August 28, '25)

AI WTP - Overview of Core Technologies

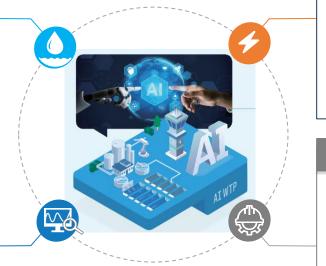
2. Progress of Al&DT in WTPs K water

A smart WTP that integrates big data and AI with existing human-operated systems 77

(Four Key Technologies: Al-based Autonomous Operation, EMS, PMS, Intelligent Monitoring)

1 Full Autonomous WTP Operation

Reduced chemical & disinfection costs (\$1.94M/year)



Reduced inspection costs (\$3.15M/year)

Efficient Process Operation, Zero Human Error

Smart Site Prioritizing Safety · Environment ***

② Smart Energy Management(EMS)

Reduced electricity costs (\$1.44M/year)

4 Intelligent Video Surveillance

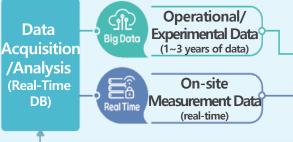
Prevention of safety accidents (\$0.25M/year)

"Stabilized process and quality, Zero Human Error"

*Reduced production cost (\$6.79M/year)"

"Accident prevention"

AI WTP - Details of Key Technologies

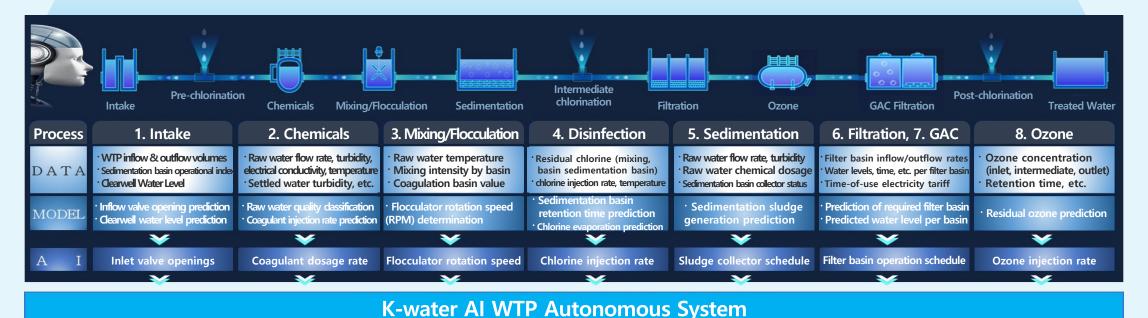

2. Progress of Al&DT in WTPs K water

Optimization of Decision-Making

1 Autonomous Operation Al-based autonomous control of all 8 WTP processes via big data-driven decision-making

Operation Process

Al algorithm analysis/prediction (Every 1~5 Minutes)


Development of Process-Specific Al Models (RF, LGBM, EGB, KNN etc.)

(RF, LGBM, EGB, KNN etc.)

Autonomous
process operation
(standalone or integrated)

Control of Valve Opening, Dosing Rates, Equipment Scheduling, etc.

Feedback (real-time data)

Al WTP – Details of Key Technologies

2. Progress of Al&DT in WTPs K water

Al Autonomous Operation Process for Chemical Dosing

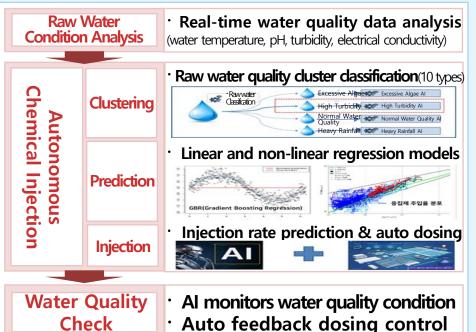
As-Is (Operator)

- Operator injects chemicals based on experience and judgment, informed by in-house lab test
 - Slow response to sudden water quality changes (takes over 30 mins)
 - Risk of human error remains present

Water Quality Analysis In-house Test(lab test)

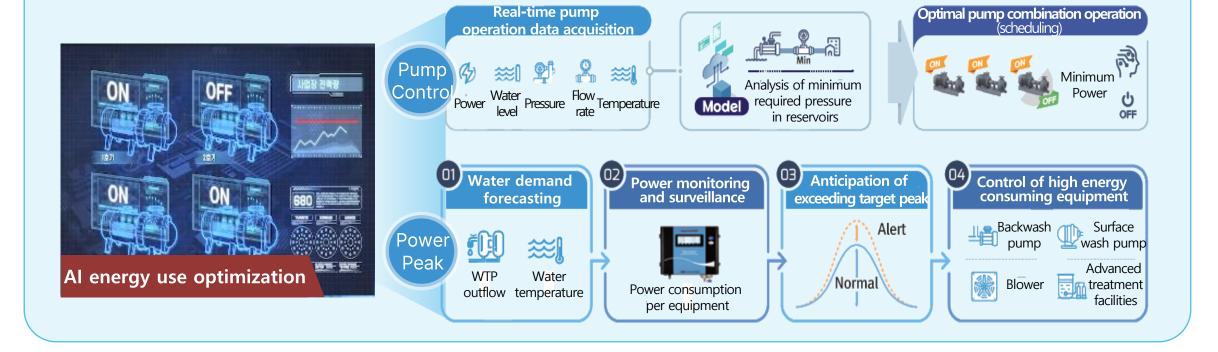
 Comparison with historical data (reference table)

- Reference in-house test results by **operator**
- Manual determination/injection of chemical dose


Water Quality Check

- Operator checks water quality status
- Manual adjustment of chemical dose

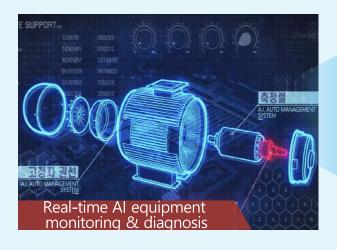
To-Be (Al Autonomous Operation)


- ✓ Al autonomously injects chemicals in real-time based on past big data analysis & prediction
 - Easily responds to sudden water quality changes (real-time analysis)
 - Zero human error, improved process efficiency

✓ Al Autonomous Operation



- 2 Management (EMS)
- Al based real-time demand & energy analysis for optimal operation planning
- (Pump Control) Optimal pump control using minimum required reservoir pipe pressure
- (Power Peak) Alert triggered when forecast exceeds target peak



Al WTP – Details of Key Technologies

EMS(Energy Management System)

- 3 predictive maintenance
- Real-time IoT sensor analysis for proactive anomaly detection & diagnosis
- (Self Diagnosis) Real-time vibration data analysis to detect faults and identify cases
 - * Faults: Shaft misalignment, mass imbalance, impeller defects, motor defects, bearing defects, cavitation
- (Abnormality Detection) Early anomaly detection and alerts from operational data analysis

Vibration data acquisition

loT data analysis

Proactive abnormality alerts

Al WTP – Details of Key Technologies

✓ PMS(Equipment predictive maintenance)

- Intelligent Video Surveillance Intelligent CCTV with an Al video analysis algorithm to detect and respond to signs of an accident
 - (Equipment Accidents) Fire/smoke, pipe leaks
 - (Facility Security) Unidentified person intrusion, loitering
 - (Industrial Safety) Falling, distress signals, no insulating gloves, no safety helmet

KISA, KTL Performance certification

✓ Intelligent Video Surveillance

Al WTP - Systematic Innovation Process

2. Progress of Al&DT in WTPs K water

Driving step-by-step innovation, from R&D to standardization

First Chemical Process Application

- (Target) Hwaseong WTP, (Project Cost) \$0.42 Million
- (Effect) Chemical reduction 4%

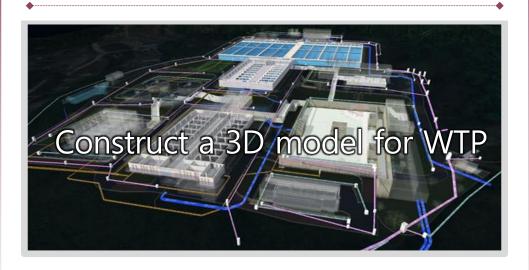
- Al algorithms, operating software, platforms, etc.

Performance Evaluation Model Development

- Drive External AI Expert Collaboration
- 5 processes, 5 items

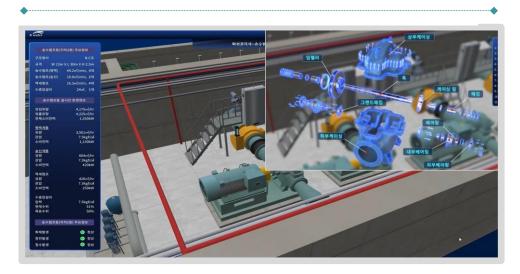
43 Metropolitan WTPs Established Nationwide

- (Cost) Pilot Project: \$2.73 Million, Expansion Project: \$31.9 Million
- (Effect) Production Cost Savings: \$6.65 Million/year



Providing AI WTP Construction Guidelines

- K-water-led International Standard **Development Underway**
- National Standard Tech Enhancement Project (MOTIE), \$0.68 Million
- * MOTIE: Ministry of Trade, Industry and Energy


Implementing real-world facilities in a virtual space to enable monitoring, management, analysis, and simulation functions

Building a Water Supply Digital Twin

- · Construct 3D models of WTP and facilities/equipment
- · Intuitive understanding of facility status through 3D

Operation & Maintenance linked to the DT

- · Facility history inquiry, input and management of inspections and maintenance
- · Monitoring operational/status data, timely fault response

Plan

"Establishing a decision support system using the Digital Twin(DT)"

* Integrating all SW (monitoring, analysis, simulation, crisis response) into a single platform

Chapter 3

Improvement of Water Infrastructure Based on AI and Smart Technologies

Key Achievements

Significance of Innovation & Achievements

3. Key Achievements

■ Significance of technological innovation

- World's first AI tech in water treatment process operation
- Proprietary tech based on K-water's operational big data

I Establishment of a digital ecosystem

- 25 patents transferred to 7 private companies
- Global & Domestic market development support (e.g., CES, ACE, Water Korea)

External Achievements

Grand Prize at Seoul International Invention Fair

2023.11.

Recognition of world-class

tech in global inventions

World's first in the water field, 4th Industrial Tech Leading Company (4th domestically, 154th globally)

Selected as a WEF **Global Lighthouse**

2024.1.

the UN SDGs Digital

2024.8.

Top 10 Mechanical Tech of the Year in Korea

2024.11.

IR52 Jang Young-Shil Award(108th)

2025.08.

Awarded for innovative, socially impactful 'digital solutions'

Recognized for outstanding technology and innovation (Award level: Korea's first lunar rover, etc.

New tech & innovative products (Evaluation criteria: Economic feasibility, technological superiority, etc)_

Securing tech diffusion momentum through ISO & digital ecosystem development

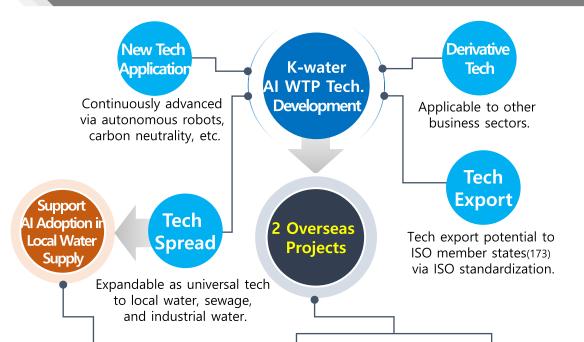
ISO International Standards Established

■ AI WTP design and technical evaluation methods (Target: by 2027 through government-funded project)

[Reference: ISO standard development process]

- Pursuing OECD BDN (expected acquisition in Nov. 2025)
- "Anticipated as World's First in Water Sector, Korea's First
- * BDN(Blue Dot Network): OECD certification improving infra efficiency, promoting investment, and tackling global crises

- **Pursuing international standard patents**(KIPO)
 - Establishing strategies to obtain ISO standard patents
 - (Significance) Securing Korea's tech rights & dominance
 - (Duration) Mar. 2025 ~ Dec. 2025 / (Project Cost) \$36 K
 - Targeting 2 standard patents in 2025, and 10 by 2028
- Filing 4 core tech patents & promoting tech transfer
- Fostering a domestic digital ecosystem through tech transfer and collaborative growth


Participation of 39 ICT SMEs

7 SMEs transferred 25 technologies

Supporting market entry at CES, ACE

Leading global water market via tech expansion

Master plan for AI integration in local water supply

- (Sep. 2024 May 2025, \$0.11M) - Definition of Al level and
- development of evaluation tools

Indonesia New Capital City Project

- ODA Project, \$20.5 Million
- Chemical Process, Intelligent Video (\$0.29 Million)

Vietnam Long An Water Supply Project

- PMV Water Co. Equity Acquired, \$21.29M
- Gov't Shared Growth Project, \$0.51 Million

 Consulting support planned for local governments and Tokyo Metropolitan Government, based on AI WTP requests

Reducing production costs & enhancing public value

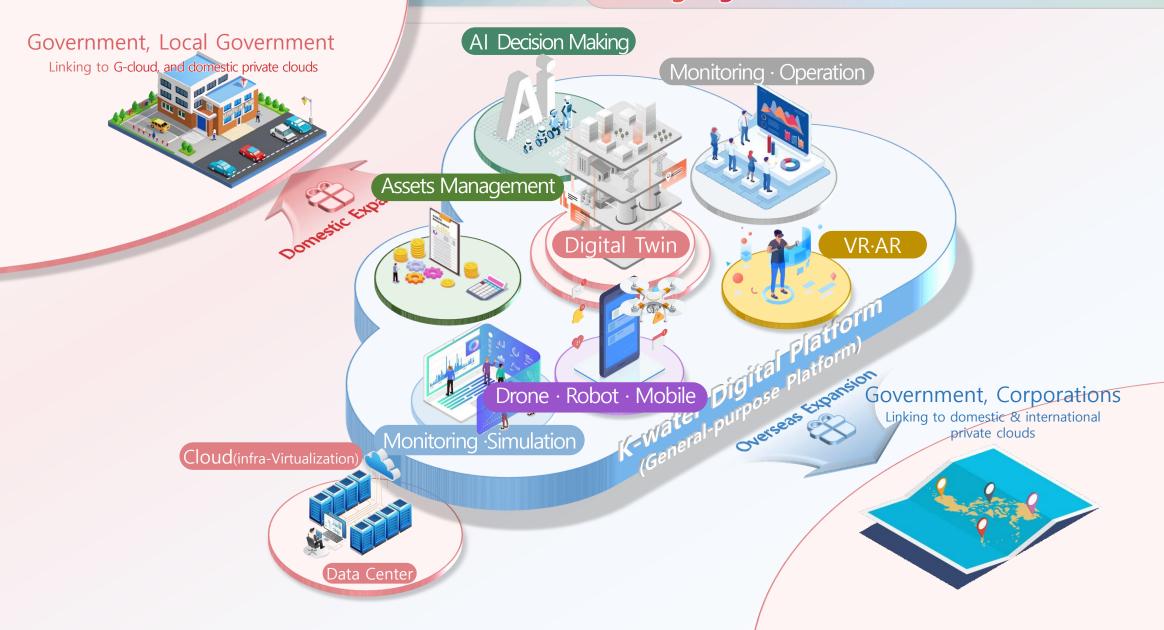
Stable High-Quality Water Supply

Minimize Human Error
(Accident prevention & process optimization)

Reduce Public Burden

Production Savings 6.76M/year

\$6.76M Annual Cost Reduction (Savings in electricity, chemical, and maintenance costs)


Water Industry Co-growth

25 Water Co. Tech Transfer

Pioneering Digital Water Market ('Projected to be a market of approximately \$52.52 B by. 2030)

* 1 USD = 1,390 KRW (As of August 28, '25)

Realizing Digital · Al Transformation based DT Platform

